Genetic analysis of the myotubularin family of phosphatases in Caenorhabditis elegans.
نویسندگان
چکیده
Myotubularins (MTMs) constitute a large family of lipid phosphatases that specifically dephosphorylate phosphatidylinositol (3)P. MTM1 and MTM2 are mutated in X-linked myotubular myopathy and Charcot-Marie-Tooth disease (type 4B), respectively, although the mechanisms whereby MTM dysfunction leads to these diseases is unknown. To gain insight into MTM function, we undertook the study of MTMs in the nematode Caenorhabditis elegans, which possesses representative homologues of the four major subgroups of MTMs identified in mammals. As in mammals, we found that C. elegans MTMs mediate distinct functions. let-512 (vps34) encodes the C. elegans homologue of the yeast and mammalian homologue of the phosphatidylinositol 3-kinase Vps34. We found that reduction of mtm-6 (F53A2.8) function by RNA inhibition rescued the larval lethality of let-512 (vps34) mutants and that the reduction of mtm-1 (Y110A7A.5) activity by RNA inhibition rescued the endocytosis defect of let-512 animals. Together, these observations provide genetic evidence that MTMs negatively regulate phosphatidylinositol (3)P levels. Analysis of MTM expression patterns using transcriptional green fluorescence protein reporters demonstrated that these two MTMs exhibit mostly non-overlapping expression patterns and that MTM-green fluorescence protein fusion proteins are localized to different subcellular locations. These observations suggest that some of the different functions of MTMs might, in part, be a consequence of unique expression and localization patterns. However, our finding that at least three C. elegans MTMs play essential roles in coelomocyte endocytosis, a process that also requires VPS34, indicates that MTMs do not simply turn off VPS34 but unexpectedly also function as positive regulators of biological processes.
منابع مشابه
Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases.
The myotubularin family is a large eukaryotic group within the tyrosine/dual-specificity phosphatase super-family (PTP/DSP). Among the 14 human members, three are mutated in genetic diseases: myotubular myopathy and two forms of Charcot-Marie-Tooth neuropathy. We present an analysis of the myotubularin family in sequenced genomes. The myotubularin family encompasses catalytically active and ina...
متن کاملMutations in the MTM1 gene implicated in X-linked myotubular myopathy. ENMC International Consortium on Myotubular Myopathy. European Neuro-Muscular Center.
X-linked recessive myotubular myopathy (XLMTM) is characterized by severe hypotonia and generalized muscle weakness, with impaired maturation of muscle fibres. The gene responsible, MTM1, was identified recently by positional cloning, and encodes a protein (myotubularin) with a tyrosine phosphatase domain (PTP). Myotubularin is highly conserved through evolution and defines a new family of puta...
متن کاملPI3P phosphatase activity is required for autophagosome maturation and autolysosome formation.
Autophagosome formation is promoted by the PI3 kinase complex and negatively regulated by myotubularin phosphatases, indicating that regulation of local phosphatidylinositol 3-phosphate (PtdIns3P) levels is important for this early phase of autophagy. Here, we show that the Caenorhabditis elegans myotubularin phosphatase MTM-3 catalyzes PtdIns3P turnover late in autophagy. MTM-3 acts downstream...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 36 شماره
صفحات -
تاریخ انتشار 2003